Exercise 28

Find an equation for the plane that passes through the point $(2,-1,3)$ and is perpendicular to the line $\mathbf{v}=(1,-2,2)+t(3,-2,4)$.

Solution

The equation for a plane is

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0,
$$

where \mathbf{n} is a vector normal to the plane and \mathbf{r}_{0} is the position vector for any point in the plane. The direction vector of the line, $(3,-2,4)$, serves as a normal vector to the plane, and $(2,-1,3)$ is the needed position vector.

$$
\begin{gathered}
(3,-2,4) \cdot(x-2, y+1, z-3)=0 \\
3(x-2)-2(y+1)+4(z-3)=0 \\
3 x-6-2 y-2+4 z-12=0 \\
3 x-2 y+4 z=20
\end{gathered}
$$

